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SUMMARY 

A Fourier-Chebyshev pseudospectral method is used for the numerical simulation of incompressible flows in a 
three-dimensional channel of square cross-section with rotation. Realistic, non-periodic boundary conditions that 
impose no-slip conditions in two directions (spanwise and vertical directions) are used. The Navier-Stokes 
equations are integrated in time using a fractional step method. The Poisson equations for pressure and the 
Helmholtz equation for velocity are solved using a matrix diagonalization (eigenfunction decomposition) 
method, through which we are able to reduce a three-dimensional matrix problem to a simple algebraic vector 
equation. This results in signficant savings in computer storage requirement, particularly for large-scale 
computations. Verification of the numerical algorithm and code is carried out by comparing with a limiting case 
of an exact steady state solution for a one-dimensional channel flow and also with a two-dimensional rotating 
channel case. Two-cell and four-cell two-dimensional flow patterns are observed in the numerical experiment. It 
is found that the four-cell flow pattern is stable to symmetrical disturbances but unstable to asymmetrical 
disturbances. 
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I .  INTRODUCTION 

The study of flow through a rotating rectangular channel is of theoretical and practical importance. 
Practically, rotating channel flow is common in rotating machines, such as coolant flow within turbine 
blades, pulp flow in paper refiners, flow in centrifugal pumps and in instruments that measure mass 
flow based on the Coriolis effect. On the other hand, the theoretical study of rotating flow can lead to a 
better understanding of secondary flow motion, bifurcations, secondary stability and the transition to 
turbulence. As the flow undergoes rather complex structural changes, it provides a useful framework 
for testing computational algorithms to see whether they can capture all the nuances exhibited by the 
flow. This requires verification with either experiments or cross validation using different 
computational discretization schemes. 
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Existing studies on rotating channel flows are limited eitehr to two-dimensional fully developed 
flow'.* or, in the three-dimensional case, to an idealized infinite geometry subjected to spanwise 
periodic boundary  condition^.^ In this study we present a three-dimensional, time-dependent numerical 
algorithm for studying the flow in a rotating channel with realistic, no-slip boundary conditions in both 
the vertical and spanwise directions. Since the flow is pressure-driven in the streamwise (x-) direction, 
we look for solutions that have no streamwise variation (two-dimensional solutions) as well as those 
that break the translated invariance in the x-direction, resulting in streamwise periodic (three- 
dimensional) solutions. To allow for these effects, periodicity is imposed in the streamwise direction 
only. Since time variation is also allowed in the formulation, we should be able to capture any travelling 
wave solutions also. The present formulation will not capture spatially evolving flows in the 
streamwise direction because of the use of periodic conditions in that direction. 

In certain areas of computational fluid dynamics, especially in the study of the mechanism of early 
transition to turbulence, spectral methods have been used quite suc~essfuliy.~-~ For three-dimensional 
channel computations, most existing methods and codes are based on the assumption of periodic 
boundary conditions in two directions (streamwise and spanwise), which is useful for investigating 
homogeneous turbulence. In several recent studies the periodic boundary condition has been replaced 
with no-slip conditions for duct flow, which might reveal the physics of wall turbulence by direct 
numerical simulation. This of course requires that the algorithm be reliable and such an algorithm 
should be its limiting cases capture all the known lower-dimensional flow features such as multiplicity 
and stability of simpler flows. Such algorithms have not been tested from such a perspective and this is 
the main motivation for the present work. In other words, the question that we pursue is: can a single 
algorithm, that has all the degrees of freedom in all three spatial and temporal directions and very little 
assumption concerning symmetries in the flow, capture the entire range of structural changes in flow 
behaviour over the entire parameter range? This is obviously a formidable task. Our attempt is a 
modest one of assembling such a code from existing knowledge of various aspects of the numerical 
scheme and validating it against certain known bihrcation phenomena of two-dimensional solutions 
and their stability. The temporal formulation provides a natural medium for testing the stability aspects 
as well. 

The governing equations are given in Section 2. The numerical methods are described in Section 3. 
Finally, results that validate the present algorithm are discussed in Section 4. 

2. GOVERNNG EQUATIONS 

The governing equations are the incompressible, Navier-Stokes equations in a reference frame that 
rotates with the channel: 

&* 
- + (v** V*)V* + 2& x V* = -V*v + vA*v*, 
at* 

V'. v = 0, (2) 

where an asterisk indicates a dimensional quantity. Here v' = (u * ,  v * ,  w * )  represents the velocity 
fields, cp is a potential that combines the thermodynamic pressure with centrifugal and gravitational 
terms, W is the rotation vector, with W = (0, Q, 0) and is the kinematic viscosity. 

Using the dimensionless variables 
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where v = (u, v, w), U = -(aCp/ax)/pR and L,  h and b are the dimensional lengths of the channel in 
the x-,y- and z-direction respectively, equation (1) can be written as 

aP + 2 ~ =  1 - - + E k  
ax 

Here Ro = U / b R  is the Rossby number, representing the ratio of convective inertial force to Coriolis 
force, Ek = v/b2R is the E h a n  number, representing the ratio of viscous force to Coriolis force, and 
yx = b/L and y, = b/h  are the aspect ratios in the x- and y-direction respectively. The pressure in the 
streamwise direction has been decomposed into a mean pressure gradient (which is used as a scale in 
v) which drives the primary flow in the streamwise direction. 

The boundary conditions are (Figure 1) (a) periodic in the x-direction, 

(b) no slip at the walls in the y- (vertical) direction, 

v(x, 0, z, t )  = v(x, 1, z, t) = 0,  

and (c) no-slip at the walls in the z- (spanwise) direction, 

v(x, y, 0, t) = v(x, y, 1, t )  = 0. 

0 -  

0 z 1- 

Figure 1.  Flow in a 3D rotating channel 
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3. NUMERICAL METHOD 

The numerical algorithm used here is not entirely new. Eigenvalue decomposition and fractional step 
methods have been discussed well in the l i terat~re.~” Application of the scheme to a realistic and 
experimentally realizable flow condition makes it suitable for validation of such a scheme. The 
validation in the present work is achieved by comparing with previously known solutions computed 
using entirely different numerical schemes. 

In the present work, Chebyshev polynomials that satisfy the no-slip condition on the duct boundaries 
are used. Periodic boundary conditions are used only in the streamwise direction. Time evolution is 
tracked with the fractional step method. We have focused on the lower range of the parameter space 
where multiplicity and stability features of the flows are known from other independent, two- 
dimensional studies. Reliable calculation of flows at higher flow conditions leading to turbulent flows 
is not attempted here. It will be the subject of future work. 

3. I .  Spatial discretization 

Here is a brief description of the Fourier-Chebyshev mamx method adopted from References 5 and 
7. In the streamwise direction a Fourier series is used as the basis functions and the collocation points 
are selected as 

The spatial derivatives are given by 

where p represents the first and second derivatives and d:k are the spatial derivative matrices whose 
elements are given in References 4 and 6. 

For the vertical and spanwise directions, Chebyshev polynomials are used as the basis functions and 
the collocation points are selected as 

y -  = - I [  1 +cos  (y))], ___ j = 1 (  . . . ,  ? , + I ,  
J 2  

- I  7 = I [ l + c o s r y ) ] .  2 k = l ,  . . . ,  N z + l .  

The spatial derivatives based on the Chebyshev basis functions are given by 

whcre p represents the first and second derivatives and y, are given in References 4 and 6. 

3.2. Temporal discretizution 

The governing equations ( 4 H 6 )  can be written in index form as 

A fractional step method is used for temporal discretization and advancement as follows. 
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Firstfiactional step. The non-linear terms and Coriolis terms are advanced explicitly from n to n + 
using the RK3 (a low-storage version of third-order Runge-Kutta4 method in the form 

The Courant number for this explicit method is 

The directions y and z have non-periodic boundary conditions and non-uniform Ay and Az- are used. 
Second fractional step. The viscous terms are advanced implicitly from n + f to n + f using the 

Crank-Nicolson method in the form 

Afier simple algebraic manipulation we end up solving the Helmholtz equation for velocity in this 
step: 

(1 1) 
2 ~3 - j p 1 3  = - ( ~ 2 ~ : + l / 3  - iu, n + 1 / 3  ), v UI 

where i. = 2/AtEk. 
Thirdfiuctional step. Pressure correction is applied at the last step so that 

- AtVpn", ( 1 2 )  U n t l  - n + 2 / 3  
I - u ,  

with the divergence-free condition enforced as 

Therefore we have a Poisson equation for the pressure: 

Thus the divergence-free condition is satisfied at the end of each full step. 

3.3. Eigenvalue decomposition method for Helmholtz equation and Poisson equation 

With the fiactional step method (splitting technique) mentioned above, we must solve a Helmholtz 
equation for velocity at the second hctional step and a Poisson equation for pressure at the last 
fractional step. For three-dimensional unsteady flow this causes difficulties in both storage and speed 
of computation. To overcome these difficulties, an eigenvalue decomposition method is used to deal 
with the Helmholtz equation and the Poisson equation. 

Similar to the Schur decomposition, the eigenvalue decomposition method, also called matrix 
diagonalization, has come to be known as the Haidvogel-Zang algorithm in fluid dynamics after the 
paper by Haidvogel and Here we briefly give the procedure of the eigenvalue decomposition 
(matrix diagonlization) method for solving the Helmholtz equation. 

For the sake of simplicity, equation (1 I )  can be written as a standard form of the Helmholtz equation 
(one-component velocity): 

@u + L$u + L& - AU = s, 
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where @. D; and are the second-derivative operators and S is the source term representing the right 
side of (1  I ) .  Generalizing to three components of velocity is straightforward. Equation (1  5 )  can be 
decomposed into eigenspace as 

(M, + /?, + Y k ) G  - iic = s, (16) 

where z,, /?/ and y k  are the eigenvalues of the operators @, and respectively given by 

{ r ,  . . . x , .  . . z N X )  = EX-’#EX, 
{PI ---f i l . . . / l%?) = EY-’qEY, 
{yI  ...yk...yNz] = EZ-’@EZ. 

Here EX, EY and EZ are the eigenvectors of the operators @, Df; and of respectively and fi and S 
represent u and S in eigenspace respectively. After decomposition for each i .  j ,  k the Helmholtz 
equation becomes a simple algebraic equation (1 6) in eigenspace, which can be solved with simple 
algebra immediately as 

where 

S = EX-’S(EY~)-’(EZ~)-’. 

The value of u can be obtained in physical space by the matrix multiplication 

= EX ic EY~EZ’. (18) 

A similar procedure can be used for solving the Poisson equation. Ku et al.’ give an implementation 
for the pressure Poisson equation in detail, especially in dealing with the boundary conditions. This 
method can reduce storage from N 3  x N 3  to N 3  in both the Helmholtz equation and the Poisson 
equation. Since operators such as eigenvalues and eigenvectors are invariant in time, they can be 
computed at the first step, saved and used subsequently for each time step computation. For three- 
dimensional unsteady problems this method is advantageous over the 3D direct inverse method in both 
storage and time. (One also has to be careful to deal with the comer singularity in the 3D direct inverse 
method.) 

4. RESULTS AND DISCUSSION 

Extensive tests were carried out to select suitable time and spatial discretization parameters that yielded 
grid-independent results. The time step was chosen not only to meet, the CFL condition but also to 
control the truncation error. For all one- and two-dimensional solutions a spatial resolution of 
3 x 15 x 15 was used in the calculation, which was deemed adequate since increasing the resolution 
did not affect the results significantly. 

4.1. Rectilinear flow (Ek + co) 

The above-described algorithm and code for rotating channel flow can be verified with rectilinear 
flow (EK + co), for which there is an analytical solution, and also compared with existing 2D results. 
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There are two asymptotic limit cases for rotating channel flow. When the channel rotates slowly, the 
flow is the slow rotation limit of creeping rectilinear flow (EK + 00) where viscous forces are 
dominant. When the channel rotates rapidly, the flow is the rapid rotation limit of Ekman boundary 
layer flow (EK -+ 0) where the Coriolis force plays the dominant role. For the slow rotation limit case 
(Ek + 00, Ro = 0) with 7, = 1 the governing equation (4) reduces to the Poisson equation 

An exact solution obtained using the separation-of-variables method' for velocity is 

1 c Q W  16 sin[(2n + l)nz] sin[(2m + 1)nyI u = - x  c 
Ekm=o n-0 d ( 2 n  + 1)(2m + 1)[(2n + + (2m + 1)2]. 

The total volumetric flux along the channel for this rectilinear flow case (Ek being unity) is 
I I  

Q = lo lo udydz = 0.0348. 

To compare with the exact solution, a computation was carried out for a limiting case with Ek + 00 

and Ro = 0. The computation was carried out on an SGI Iris R3000A with 32 Mbytes RAM. The CPU 
time required for impulsively started flow to reach steady state was about 70 h. Figure 2 shows the flow 
rate as a h c t i o n  of dimensionless time. At t = 0.3 the flow has reached a steady state with flow rate 
Q = 0.0350906, whereas the exact flow rate is Q = 0.0348 for the duct with the domain of cross- 
section being y E [0, 1],z E [0, 11. (The exact flow rate for a duct with the domain of cross-section 
being y E [- 1 ,  11, z E [- 1, I ]  is Q = 0.56227 and our code gives Q = 0.5684.) This is a global test for 
the algorithm and code, yet it is a crucial one, since the result is obtained by solving the complete 
equations ( 4 H 6 )  with € k =  1 and Ro = 0 instead of solving the Poisson equation. It tests the capability 
of the asymptotic limits of the code. As shown in Figure 2 agreement is quite satisfactory. Figure 3(a) 
shows the contour plot of the axial (streamwise) velocity over a cross-section of the duct. Figure 3(b) 
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Figure 2. Rectilinear flow case: flow rate versus time 
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Figure 3 Rcctilinedr flow cases: (a) contour plot of axial velocity. (h) spatial vicw of axial velocity profile 

shows the perspective plot of the axial velocity as a hnction of y and z. In the slow rotation limit of 
rectilincar flow the streamwise velocity profile along the height and width of the channel is a parabolic, 
Poiseuille-type velocity profile. Observe the reflective symmetry about both the J' and z-axis in Figure 
3. Of course, the flow reaches a time-invariant state as shown in Figure 2 and there is no streamwise 
variation of the flow. Thus, although all the degrees of Freedom in the space and time domain were 
allowed in the model, the simulation converges to a one-dimensional, steady flow, since there IS  a 
stable solution with these attributes in this parameter region. 

4.2.  Two-cell structures (Ek = 0.01, Ro = 0, Ro = I) 

I t  is well known that in channels of finite extent in they- and z-direction a secondary flow. driven by 
Coriolis force, begins to develop in the cross-plane cv, z) even for a small rate of rotation. The common 
secondary flow pattern is a two-cell flow pattern with reflective symmetry along the middle of the 
channel perpendicular to the axis of rotation (i.e. (p = 0.5. z)). Observe that the reflective symmetry of 
the one-dimensional solution about the (p. z = 0.5) axis is broken by the system rotation. 
Computations for Ekman number Ek = 0.01 and Rossby numbers Ro = 0 and Ho = I ,  where both 
viscous and Coriolis forces are important, are performed using our 3D code. However. the converged 
steady state results show no streamwise variation, because there arc stable two-dimensional solutions 
in this region of the parameter space. Figure 4 shows the flow rate as a fimction of time for Ek = 0.0 1 
and R o  = 0 .  The flow has reached a steady state with flow rate Q = 2.470 18. Figure 5(a) shows the 
contour plot of the axial (streamwise) velocity and Figure 5(b) shows the perspective plot of the axial 
velocity profile at Ek = 0.01 and Ro = 0. When we increase the rotation rate, the maximum veloclty 
along thc >>-axis starts to shrink owing to the appearance of the secondary flow in the cross-section 
(two-cell flow pattern in Figure 5(c)). As thc rotation rate increases to Ek = 0.01. the so-called Taylor 
Proudman configuration in thc interior of the channel appears. 

Figure 6 shows the flow rate as a hnction of time with Ek = 0.01 and Ro = I .  The flow has reached 
a steady state with flow rate Q = 2.1943, lower than the value Q = 2.4701 8 computed at R o  = 0. This 
is because of the intensification of the secondary flow with increasing Rossby number, resultink 1 in  . a 
decreased flow rate at a fixed imposed streamwise pressure gradient. The contour plot and perspective 
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Figure 4. Flow rate versus time 

Figure 5 .  (a) Contour plot of axial velocity. (b) Spatial view of axial velocity profile 

plot of the axial velocity profile are shown in Figure 7. The Taylor-Proudman configuration is 
demonstrated clearly in Figure 7(b). The streamwise velocity is nearly flat in the interior of the channel 
in Figure 7(b), while near the upper and lower floors of the channel an Ekman layer begins to develop. 
Figures 7(a) and 7(b) show the two regions clearly: the interiorr geostrophic core and the near-wall 
Ekman boundary layer region. In the interior region of the Taylor-Proudman column (geostrophic 
region) the dominant forces are the Coriolis force and the pressure force only 
(2w = -ap/Lix, 0 = ap/ay, 2u = ap/az). The outer region near the walls is the Ekman layer: the 
boundary layer between a geostrophic flow and the solid walls at which the no-slip condition applies. 
Figure 7(c) shows the secondary flow pattern as a vector plot with standard two-cell vortices at the 
steady state. 
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Figure 6. Flow rate versus time 
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Figure 7. (a) Contour plot of axial vclocity. (b) Sparial view of axial velocity profile 

The two-cell flow patterns computed here are found to be axially invariant (two-dimensional). Wc 
recover such two-dimensional, steady flows in spite of using a hlly three-dimensional, time-dependent 
code. This bchaviour remains the same as we refine the grid points from 3 x 15 x 15 to 20 x 15 x 15 
to let the flow vary along the axial (strearnwise) direction. It is found that the two-cell pattern is 
indccd axially invariant. This is in excellent agreement with an existing bihrcation study of rotating 
channel flow2 which shows such flows in this parameter range to be stable. It also serves as an 
independent check of the accuracy of the present method as against the finite difference method used in 
Reference 2 .  
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4.3. Four-cell flow pattern (EK = 0.01, Ro = 2) 

Upon increasing the Rossby number to 2? the two-cell, two-dimensional flow was predicted to be 
unstable by Nandakumar et al.' In an attempt to verify that prediction by an independent simulation 
using the spectral method, we examine the transient evolution of the flow at Ro = 0. 

Figure 8 shows the flow rate as a function of time with Ek = 0.01 and Ro = 2. The flow has reached 
a steady state with flow rate Q = 1.9444. Figure 9 shows the time evolution of the secondary flow in 
the cross-section of the channel. The initial condition for this transient simulation is one with a two-cell 
pattern found at Ro = 1.  It is as if a two-cell state is first established by constant rotation and the speed 
of rotation is suddenly changed to reach a new Rossby number. Figure 9(a) shows the two-cell pattern 
at t = 0.5 with Ek = 0.01 and Ro = 2. By the time t = 1.1 the four-cell flow pattern starts to evolve 
(Figure 9(b)). It is shown in k'igure 9(b) that two additional small cells along the right-side wall (high- 
pressure wall) appear. At t = 3 the four-cell flow pattern is gradually formed (Figure s ( ~ ) ) .  The four- 
cell flow appears to settle down to a stable steady state (Figure 9(d)) with the saddle point located at 
y = 0.5, z = 0.6 1 (the saddle point could play a very important role in the stability of the four-cell flow 
pattern). The two-cell flow pattern spontaneously develops into the four-cell flow pattern with 
Ek = 0.01 and Ro = 2. Figure 1 O(a) shows the contour plot of the axial velocity and Figures 1 0 0 )  and 
1O(c) show two different perspectives of the axial velocity distribution. Figures 10(b) and lO(c) show 
that the velocity along the z-direction is no longer symmetrical. The location of the maximum velocity 
shifts away from the centre of the z-direction and the maximum velocities along they-direction occur at 
the top and bottom of the walls where Ekman layers are distinctive. 

Figures 11  and 12 show the axial velocity profiles as functions of y and z at their centreplane 
y = 0.5, z = 0.5) respectively. In Figure 11 it is seen that for Ek = 0.01, as the Rossby number 
increases (Ro = 0,1,2), the maximum axial velocities shift away from the middle plane ( z  = 0.5) to the 
right wall (high-pressure wall). Owing to the Coriolis force, the maximum velocity along the z-axis 
direction shrinks. In Figure 12 the axial velocity distribution along the y-axis (the axis of rotation) is 
depicted. The Taylor-Proudman column region mentioned above is clearly demonstrated in the central 
region of the channel. Also, the reflective symmetry is maintained at all rotations considered. 
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Figure 8. Flow rate versus time 
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Figure 9. Vector plot of (c, w )  (I:?i=O.OI,  R o = 2 ) :  (a) 1=0 5; (b) I =  1 . 1 ;  (c) 1 ~ 3 ;  (d) 1 ~ 2 3 . 1  
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I igurc 10 (a) Contour plot of axial velocity (b) Spatial view of axial velocity profile (c) Spatial view of axial veltxity profile 
from different angle 
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Figure 12. Velocity profile (u versus y) 

In summary, we have conducted numerical simulations at Ek = 0.01 with different Rossby numbers 
(Ro = 0, 1.2) using a fully three-dimensional, transient simulation of the Navier-Stokes equations. 
Solutions that have a higher degree of symmetry (time invariance and streamwise invariance) are 
obtained in certain regions of the parameter space whey such solutions are known to be stable. Two-cell 
flow patterns (Ro = 0, Ro = 1) and four-cell flow patterns (Ro = 2) have been observed. A four-cell 
flow pattern has developed spontaneously from a two-cell flow pattern in the present simulation. It is 
well known that the two-cell flow pattern is stable at low Rossby numbers. The four-cell flow pattern in 
rotating channel flow has been shown to be conditionally stable. In the next subsection we examine this 
issue. 
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4.4. Stability of a four-cell flow pattern (Ek = 0.01, Ro = 2) 
Parallel to Winter's work on the Dean problem, Nandakumar et al.' recently conducted a complete 

bifurcation study on the stationary, two-dimensional solutions in rotating rectangular channels. One of 
the main results of their work is that the four-cell, axially invariant solution is unstable to asymmetrical 
perturbations but stable to symmetrical perturbations. We conduct a numerical simulation using our 
three-dimensional code to verify this stability result. 

The first step of a stability study is to identify a basic state. The basic state is the four-cell flow pattern 
with Ek = 0.01 and Ro = 2. Initial symmetrical disturbances to the basic flow pattern are set up by 
letting all components of velocity (u ,  2;. w) be zero at the location y = 0.5, z = 0.5-1. Physically this 
means that we put a wire or needle in the centreplane of the channel, which is the standard experimental 
means of perturbing the basic flow. The location of this perturbation can be seen in Figure 13 and 14. 
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 fig^ 13. Symmehial disturbances of four-cell flow pattern: (a) contour plot of u;  (b) vector plot of (c. w) 

Figure 14. Flow rate versus time with symmetncal disturbances 
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Figure 13(a) gives the contour plot of the perturbed axial velocity and Figure 13@) gives the vector plot 
of the perturbed four-cell flow pattern. Figure 14 shows the flow rate perturbed at t = 0 as a function of 
time (the inset shows the location of the initial symmetrical disturbances). 

A standard hydrodynamic stability question may be asked: can this given four-cell flow pattern 
(physical state) withstand symmetrical disturbances and still return to its original state? The answer to 
this question can be found in Figure 15. Figure 15(a) shows the four-cell pattern with the above- 
mentioned initial symmetrical disturbances ( t  = 0). Figures 15(b)-l5(d) show the flow pattern at times 
t = 0.1, 1.72 and 9.73 respectively. They clearly show that the four-cell flow pattern goes back to its 
original state. 

Is the four-cell flow pattern stable to asymmetrical disturbances? The answer is no. This can 
be demonsmed by setting up asymmetrical disturbances as shown in Figures 16 and 17. The 
disturbance wire or needle is now located at y =  0.75, z= 0.5-1. Figures 16(a) and 16@) show the 
contour plot of the axial velocity and the vector plot of the secondary flow with initial asymmetrical 
disturbances respectively. Figure 17 shows the evolution of the flow rate when a four-cell flow is 
perturbed at f = 0 (the inset shows the location of the initial asymmetrical disturbances). The evolution 
of the secondary flow motion under asymmetrical disturbances can be clearly seen in Figure 18. Figure 
18(a) shows the four-cell flow pattern with the above-mentioned asymmetrical disturbawes ( t  = 0). 
Figure 18(b) shows that the two cells in the upper plane start to merge ( t  = 0.05). As a result of the 
saddle point being pushed towards the high-pressure wall ( t  = 0.55), the merged bigger cell (vortex) 

0.0 0.2 a 4 a s  0.8 1.0 
2 

Figure IS. Vector plot of (u. w )  with symmetrical disturbances (Ek = 0.01, Ro = 2): (a) I = 0; (b) f = 0. I ;  (c) f = I .72; (d) f = 9.73 
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Figure 16. Asymmetrical disturbances of fourcell flow pattern: (a) contour plot of u; (b) vector plot of (t, w )  

continues to attract the small cell (Figure I8(c)). Eventually the bottom big cell pushes the merged big 
cell to its original location and the flow pattern becomes a twocell flow pattern (Figure 18(d)). Thus 
the four-cell flow pattern under asymmetrical disturbances does not go back to its original state. 
Instead it developes into the two-cell flow pattern. By the definition of hydrodynamic instability 
mentioned above, the four-cell flow pattern is unstable to asymmetrical disturbances. The present 
numerical simulation c o n h s  the recent bihrcation study results. 
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Figure 18. Vector plot of (u, w )  with asymmetrical disturbances ( E k =  0.01, Ro = 2): (a) f = 0; (b) r =  0.05; ( c )  r = 0.55; 
(d) t=  5-55  

5 .  CONCLUSION 

We have presented a Fourier-Chebyshev pseudospectral matrix method for the numerical simulation of 
incompressible flows in a three-dimensional channel flow with rotation. Realistic, non-periodic 
boundary conditions in two directions (spanwise and vertical directions) are used with this new 
approach. The Navier-Stokes equations are integrated in time using a fractional step method. The 
Poisson equation for pressure and the Helmholtz equation for velocity are solved using a matrix 
diagonalization (eigenfunction decomposition) method, through which we are able to reduce a 3D 
matrix probem to a simple algebraic vector equation. This is a great advantage in terms of computer 
storage for large-scale computations. Verification of the code is conducted by duplicating an exact 
rectilinear channel flow and the rotating 2D case. Two-cell flow patterns are found at Ek = 0.01 and 
Ro = 0, Ro = 1. It is observed in our numerical simulation that the two-cell flow pattern spontaneously 
develops into the four-cell flow pattern at Ek = 0.0 1 and Ro = 2. Morever, it is concluded that the four- 
cell flow pattern is stable to symmetrical disturbances but unstable to asymmetrical disturbances. The 
next step will be to examine the breakdown of the two-dimensional flows into three-dimensional ones 
at higher Rossby numbers 
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